









Defn:

Two ∠'s whose sides form two pairs of opposite rays.

### Adjacent angles





Defn:

Two coplanar angles with:

- 1. a common side
- 2. a common vertex
- 3. no common interior points

### Complementary angles





Defn:

Two angles whose measures have sum 90.

Do *NOT* have to share a common side or vertex.

### Supplementary angles





#### Defn:

Two angles whose measures have sum 180.

Do *NOT* have to share a common side or vertex.

### Drawing conclusions from diagrams

Conclusions you can draw from diagrams:

- 1. adjacent ∠'s
- 2. adjacent supplementary ∠'s
- 3. vertical **Z**'s

Can not **UNLESS** have special markings or info:

- 1. congruent or segments (must be marked)
- 2. right ∠'s (must be marked \ or measured)
- 3. non-adjacent supplementary ∠'s (marked or measured)
- 4. || lines (matching arrow head marks mid-line)
- 5. Lines (symbol)

# Example – Pg 97 Example 2



#### Putting this all to work



m LI + M LU = 180

What conjecture could you make about the two vertical angles ∠1 and ∠2?

Conjecture:  $\angle 1 \cong \angle 2$ 

Given: ∠1 and ∠2 are vertical angles.

Prove:  $\angle 1 \cong \angle 2$ 

Plan: Use Subst or trans POE

### Proving vertical angles are congruent



Conjecture:  $\angle 1 \cong \angle 2$ 

Given: ∠1 and ∠2 are vertical angles.

<u>Prove</u>: ∠1 ≅ ∠2

$$mL1 + mL4 = 150$$
 given

## Definition

A *theorem* is a proven conjecture.

A theorem can be used to establish following proofs.

## Theorem 2-1 Vertical Angles Theorem

Vertical angles are congruent.

 $\angle 1 \cong \angle 2$  and  $\angle 3 \cong \angle 4$ 



### Try it again...

Given that  $\angle 1$  &  $\angle 2$ , and that  $\angle 3$  &  $\angle 2$  are both sets of supplementary angles, what would you conjecture about  $\angle 1$  and  $\angle 3$ ?

Conjecture:  $\angle 12 \angle 23$ 

Given: " L( + W L? = 180, W L3+ML?=180

Prove: 41563

<u>110vc</u>. 200

Plan: use substitution since both are equal to mail +ml2 =180 given ml3 +ml2 =180 given pot

mc1 = mc3 subtr POE - 12 - 23 Subtr POE - L1 = L3 Sefa = L'5 Q

#### Theorem 2-2 Congruent Supplements Theorem

If two angles are supplements of the same angle (or of congruent angles), then the two angles are congruent.

| Theorem 2-3 Congruent Complements Theorem                                 |
|---------------------------------------------------------------------------|
| If two angles are complements of the same angle (or of congruent angles), |
| then the two angles are congruent.                                        |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
| Theorem 2-4                                                               |
| All right angles are congruent.                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |



If two angles are congruent and supplementary, then each is a right angle.

# Assigment

Pg 100 #1-25 odd 29-35 39-42 43-53 odd 56-59

